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ABSTRACT

Interesting and important control problems may be formulated as
a problem of seeking the global minimum of a performance surface.
Generally, the equations of this surface are unknown; further, the
' surface is often discontinuous, and has many peaks, valleys, and flat
regions. Random search techniques are most appropriate in treating
such problems. 1In a previous paper, an adaptive random search algo-
rithm was developed and applied to the problem of seeking the minimum
T of a boundary surface associated with the two-point boundary-value
problem that results from an application of the Maximum Principle. 1In
the present paper, this same algorithm is reviewed and applied to a
more complex problem: +the minimum-fuel, large-angle, single-axis
attitude acquisition problem. Comparison to optimal proportional con-
trol shows striking Improvement in performance. Cross sections through

the boundary surfaces reveal many of the irregularities noted above.
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INTRODUCTION

Compuber implemented parameter search techniques for optimization
problems have become useful engineering design tools over the past few
years. Many, if not most of the techniques, are based on deterministic
schemes which have inherent limitations when the system is nonlinear.
Random search technigues have been suggested which propose to overcome
some of the difficulties. References 1-3 give good general discussions
of the merits of random techniques. Reference 4 develops an algorithm,
based on random methods, to solve the difficult mixed two-point boundary
value problem that results from an application of the Maximum Principle.
The method was shown to be remarkably effective in solving a fairly
complex fifth-order, nonlinear orbital-transfer problem. The purpose
of this paper is to discuss the application of the random search algo-
rithm to a still more complex problem to demonstrate its feasibility.
The example chosen was the three-dimensional, large-angle, single--
axis attitude acquisition control problem in which it is desired to
minimize fuel expenditure to accomplish the acquisition. The equations
are highly nonlinear since small angle assumpbions cannot be made; the
control torques are assumed to be limited. This problem is more complex
than the orbit-transfer problem in £hat the dimension of the state
vector (6) is greater by 1 and the number of degrees of freedom allowed
the conbtrol action is greater. The same acquisition problem was dis-
cussed in reference 5 but a proportional control law was assumed. A

random parameter search was used in that paper to find the optimal set
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of feedback constants for the given control system structure so as to
minimize system performance (fuel). Systems performances will be
compa}ed to indicate the striking improvement in performance with opti-
mal nonlinear control.

In the following sections we will state the control problem for
notational purposes, review the random search algorithm developed in
detail in reference 4, discuss the hardware and software necessary for
implementing the algorithm, and last, present the results of applying

the method to the satellite acquisition problem.

PROBLEM FORMULATTON

The problems considered are restricted to those for which the
Maximum Principle is applicable. Although familiarity with the prin-
ciple is assumed, a few remarks are necessary to properly pose the pro-
blems we will be concerned with iIn this paper. The system to be
controlled is defined by the vector equation

x = f£(x,u,t) (1)
where x = (%3, X5, « + - , %3), u=(u3, « « . , u.) and uedU
where U is the allowable control region. Interest will center on
fixed-time problems because of their convenience in computer operations.
Tt will be desired to take the system from a given state x(o) to a
final target set S so as to minimize the generalized cost function

n
C=% o x(T) (2)
=0
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where x,(t) is the auxiliary state associated with the gquantity to
be minimized. The target set 8, Tor the example chosen here, will
be defined as S = x ¢ R,, that is, a fixed point in n-dimensional
space..
It is well known that application of the Maximum Principle Lo the
stated problem invariably reguires the solution to the following set

of equations:

u = u(x,p,t)
x = f(x,u,t) (3)
p = p(p,x,u,t)

where p = (pl, .+ « , Pp). We can see that the Maximum Principle

yields a good deal of information about the nature of the control,
that is, we know the function wu(x,p,t), and we know the equations
for x and ©p. However, at no time do we know the specific values of
both x and p. For example, at the initial time, x(o) is generally
known from the problem specifications, whereas p(o) is not known.r
The remaining boundary conditions required will be known at the final
time by some combination of compénents from the x and p vectors.
Thus, there is difficulty in solving these equations even numerically
because the known boundary conditions are split between initial and

final times.
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RANDOM SEARCH ALGORITHM

In this paper we will use the algorithm developed in reference L
for solving the mixed boundary-value problem. Consequently, we will
give only an intuitive account of this approach necessary for the later
example application.

A direct way of solving the mixed boundary-value problem is to
convert it into an initial-value problem. From equations (3) it is
clear that for any arbitrary value of p(o), there will be sufficient
information to determine a final state x(T). Since this state will
generally be different from the desired state x,(T), we introduce a
vector metric J (see ref. L4 for the significance of using a vector
metric rather than a scalar metric) to measure the distance between
x(T) and x,(T). It is convenient conceptually to think of the
components of the vector quantity J as hypersurfaces in an
n-dimensional space of the components of the p vector. Then the.
boundary-value problem is equivalent to finding the éimultaneous
minima of all the hypersurfaces. It is important to note that in this
case the minimum values are known, i.e., zero.

Deterministic approaches for finding the minims of the hypersur-
faces have a number of difficulties. For example, the gradient
technique requires the calculation, or possible experimental measure-
ment, of the partial derivatives of the surfaces at each step of an
iteration process. 1If the surfaces gre discontinuous, have many

relatively rapld slope changes, or regions of zero slope, gradient
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approaches will fail. The random search techniques overcome tThese

difficulties. References 1 through 4 discuss the virtues of these

methods in greater detail. In particular, it is demonstrated in

reference 4 that many of the hypersurface abnormalities mentioned

above actually occur in even a moderately complex problem.

The random search approach to be used here was described in
considerable detail in reference 4. The approach is based on a direct
search of the hypersurfaces by selecting the initial condition vector
p(o) from a gaussian noise source, followed by an evaluation of the
corresponding values of the hypersurfaces. Tt was shown that the pure
random search is not practical for moderately high-order systems
because of the slow convergence to the minimum. However, by making
the search algorithm adaptive, the convergence properties were shown
to be greatly improved. This was accomplished by: (a) wvarying the
mean value of the gaussian distribution on any iteration so as to
equal the initial condition of the adjoint vector on the last succéss—
ful iteration, and (b) varying the variance of theAdistribution 50
that the search is localized when the iterations are successful but
gradually expanded in a geometric progression when not successful.
Thus, the mean provides a creeping gnd direction~seeking character to
the search while the variance provides an expanding and contracting
character.

The behavior of the algorithm is illustrated in figure 1 by the <::§E%-

typical boundary function surface given in only two dimensions.
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Starting at point 1, the mean of the distribution is made equal to
the corresponding value of p(o); +the search starts with the small
variance indicated and gradually expands in geomebrical steps until a
lower point on the surface is detected, such as at point 2. Then the
mean of the distribution is made equal to the corresponding value of
p(o) and the search repeats. The search continues as indicated by
the typical numbered points until a value of zero or some small value,
€, near zero is reached.

This type algorithm has some desirable properties that enable it
to find the minimum. For example, it has g local minimum-seeking
property that is due to the small variance used on those iterations
which are successful. The algorithm also has a global searching prop-
erty that enables it to jump over peaks, which is due to the expansion
of the variance when the iterations are not successful. Further, it
will not matter whether the surface is discontinuous, or has many

peaks, wvalleys or flat regions.

IMPLEMENTATTON

The hybrid computer proved to be the most feasible way to imple-
ment the random search algorithm. A primary reason for this is that
a relatively large number of iterations are required to find a solution.
Reference U4 showed that approximately 8000 iterations were required on
the average for a typical solubtion. Each iteration can be, from a

computational point of view, divided into two steps: (1) integration
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of the equations of motion on the interval [0,T], and (2) execution
of algorithm logic. The analog computer is by far tﬁe faster machine
in performing step one. Although the second step might be accomplished
in approximately the same time with either machine it is best done
digitally. Thus the conclusion is reached that a hybrid approach
requires a great deal less compuber time than a completely digital sim-
ulation. It is worth noting that an albernative approach with pseudo-
hybrid techniques was investigated using an analog computer and some-
thing less than a digital computer. However, our experience shows
that inaccuracies, limited storage and limited flexibilities in logical
operations seriously limit the feasibility of this approach.

In the hybrid implementation, the analog computer was delegated
the task of solving the state, adjoint, and control equations as given
in equation (3). It also served as the point at which the operator
exercised manual control over the hybrid system. The digital computer
was required to calculate the metric, provide storage, implement the
algorithm logic, randomly generate the initial conditions for the
adjoint equations and, finally, oversee the sequencing of events of the
itergte cycle. This division of computational effort is shown
schematically in figure 2 which is a block diagram of the search algo-
rithm. The superscript k shown in this figure designates the generic

kth

iteration of a long sequence of iterations. For convenience the
Tlow of information through the block diagram may be thought to start

at pl(o) which represents the adjoint initial conditions in analog

<<:§E;. 2
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form. They are applied Lo their respective initial condition circuits
on the analog machine, and then that machine is commanded into an
operate mode. The set of equations (3) are solved on the time interval
[0,T], and at time T +those analog components we are interested in
reading are commanded into a hold mode and the executive sequencing
program instructs the A/D converters to read these variables. On the
basis of this information the boundary cost function metric is computed
digitally, and then tested by comparing it to the last smallest value
discussed above. On the basis of this test information, the algorithm
logic operates to control the mean value m* and variance oF. A
new random vector pk =m* + €Y is then generated, converted to an
analog signal, and applied to the p(o) initial condition circuits.
The whole process is repeated for the next iteration.

Figure 3 is a hardware diagram of the hybrid system us=d. Shown <::§gé.
aré the two basic elements of the simulation, the analog and digitgl
computers along with thelr coupling system, and peripherals. The
coupling system is comprised of two distinct parts: (a) <+he Linkage
Systems and (b) +the Control Interface System. A discussion of the
hardware used in thess subsysbems in given in the four sections to
follow. The next (fifth) section discussas the sequencing of e&ents
through the subsystems during one iteration cycle in order to better
describe the functioning of the hybrid system as a whole. Discussad

in the final section is the flow graph for the algorithm.
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Digital Computer

The digital computer used in the optimization program was an
Electronic Associates, Inc. (FAI) model 8400. The particular machine
used has 16,000 words of core memory with 32 bits per word. Memory
cycle time is 2 microseconds. The machine uses parallel operation for
maximum speed. Floating point operations are hardware implemented.
The optimization program was coded in MACRO ASSEMBLY in order to keep
the execubtion time to a minimum. The instruction repertoire includes
special commands by which discrete signals can be sent to or received
from the external world. External interrupts are provided which can
trap the computer to a specific cell in memory. In an example to be
discussed later, the optimization program utilized about 8,000 words
of storage. Of these about 1,000 comprised the actual optimization

executive program, the remaining 7,000 being used for subroutines,

monitor and on-line debugging and program modification routines.

Analog Computer

The analog hardware consisted of an Electronic Associates 231R-V
analog computer. Since the state equations, adjoint equations, and
the control logic were programmed in standard fashion, analog schematics
were not included.

The analog compuber serves as the point at which mode control of
the hybrid computer is accomplished. By manual selection of switches

either of two modes can be commanded: (1) In the "search" mode the
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analog computer operates in a high-speed repetitive manner. Such
operation is accomplished by controlling the mode of’the individual
integrators with an appropriate discrete signal. This signal is a
two-level signal which is generated on the control interface in
conjunction with the digital computer and, depending on the level,
holds an integrator in either "operate" or "initial condition" mode.
(2) 1In the "reset" mode, the integrators are placed in their initial-
condition mode and held there.

For continuous type oubput, a display console was connected to the
analog computer to provide visual readout of variables. The display
contained a cathod ray tube (CRT) which could simultaneously display
up to four channels, and enabled photographic records to be taken of
the display quantities. The display was exbremely helpful in deter-

mining if the algorithm was functioning properly.

Control Interface

The control interface bebween the analog and digital system is an
Electronic Associates, Inc. DOS 350 (see fig. 3). It is through this
unit that the iteration process is controlled. An important task allo-
cated to this subsystem is the operate-time control. This function is
implemented through the use of a counter and is the key element in the
control of all timing in the hybrid simulation. The counter is driven
from a high-~frequency source in the interface systeﬁ allowing for a very

high degreeyof resolution in the simulated operate-time. Also, the
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interface allows the digital computer to use any conditions in the
analog computer which can be represented by discrete variables (binary
levels) and to send discrete signals to the analog system to be used

a8 control levels or indicators. As example of the former would be the
hybrid system mode control which merely amounted to the operator
depressing the "reset" or "search” switch on the analog computer. This
action sets a binary level which is then sensed by the digital computer.
An example of the latter situation is when the digital sends the operate
command to the operate-time counter. The interface system allows
patching of Boolean functions. Hence, some of the logic operations
required for timing pulses, event signals, and other like operations

were very effectively programmed on it.

Linkage System

The linkage system shown in figure 3 houses the conversion equip-
ment, the A/D and D/A converters. It i1s through here that all of the
data pass between the analog and digital portions of the simulation.

The linkage system is controlled by command from the digital computer.

Input to the digital compuber is through the A/D converter via a
channel selection device or multiplexer that selects the analog channel
40 be converted. Conversions were sequential through the analog
channels at a maximum rate of 80,000 samples per second from channel to
channel.

Output to the analog used the D/A converters, with each data channel

having its own conversion unit. The maximum conversion rate of the D/A's
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used in 250,000 conversions per second.

Sequencing of Events During One Iteration

The sequencing of events during one iteration cycle are depicted
in figure 4. The instants of time +%,, t5, . . . , tg shown in this <::§§g-
figure are considered fixed relative to each other, and +, 1is conve-
niently regarded to be the start of the iteration cycle. We will con-
sider the cycle to begin at 4, with the analog integrators in an
operate mode. As discussed previously, the elapsed time (tg-tl) is
controlled by a counter on the interface system. At t, an interrupt
pulse is generated on the control interface which is sent to the digital
computer signaling it to commence its operations. Simultaneously, the
pulse is sent to the analog to instruct the track-store units to hold
their respective values which they had at time +t5. During the interval
(tg=tz) the digital computer reads these analog variables with the A/D
converter. At t,; +the digital sends a pulse via the interface to the ¢
analog console which commands the integrators to an initial condition
mode. At T4, when the data required by the algorithm have been
generated, the D/A converters send these values to the appropriate
points in the analog portion of the simulation. The digital machine
allows enough time for the transients to settle in the initial condition
circuits of the analog before sending a command at tg <that places the
integrators in an operate mode and starts the counter. ©Since ty; and
t, are the same event, we merely repeat the above sequence for

repetitive operation.
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Some specific numerical values might be of interest. The total
iterate time (tg-t,) is primarily composed of two parts: (1) (bp-tq)
which in & later example problem was scaled in the simulation to 7.5 -
milliseconds, and (2) (ts5-t5), which was primarily determined by the
speed of the digital machine in computing, converting, and generating
rgndom numbers; this latter period was on the order of 7.5 milliseconds.
Thus, the total iterate time for the above situation is on the order
of 15 milliseconds (or 66 iterations per second). This figure is
dependent on the control problem chosen and the exact form of the algo-

rithm implemented.

Algorithm Flow Graph

Figure 5 is a program flow graph showing the software requirements <::Egg. 5
of the iteration process. This basically constitutes a majority of
the steps involved in the algorithm and the iteration control sequences
utilized by the hybrid system. HNote the inclusion of the event times
ty, t2, - . . discussed earlier in connection with figure 4. The pro-
gram is continuously recyeling in a high-speed repetitive fashion.

There are three basic loops in figure 5 corresponding to the three
system modes in the optimization program: a reset loop, a search loop,
and an end-state loop. The reset loop initializes the program. The
search loop uses the algorithm to search for a solution to the problem.
The end~state loop is entered by the digital program when a solution is

found, and is used for generating graphic displays. The operator
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manually selects the search or reset mode as discussed in the section
dealing with the analog computer. A more debailed description of these

loops is given in reference k.

APPLICATION

In this section we will discuss the application of the random
search algorithm to the single-axis attitude acquisition control prob-
lem. TIn the following we will first formulate the problem by giving a
physical description of the problem and writing out the exact equations
of motion. Second, we will oubtline the equations necessary for deter-
mining optimal nonlinear control as derived by means of the Maximum
Principle; for comparative purposes we will also outline the optimal
proportional control derived in reference 5. Next, we will discuss the
boundary conditions and tﬂe vector metric. In the final two subsections
we will illustrate the computer results: in one we will give a variety
of time history solution and fuel performances, and in the other, some

cross sections through the boundary cost-function hypersurfaces.

Formulation
Consider g freely rotating vehicle V about a point b, in
inertial space defined by the set of axes (S;, S5, Sg) shown in the

sketch.
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Sz

A fixed set of body axes, by, by, by, 1is ascribed to the vehicle in
the principle axes of inertla with origin at b,. The orientation of
any body axis with respect to inertial space will be specified by
direction cosines, e.g., &35, @gz; @33 Where &,5 is the cosine of
the plane angle between S, and by, and similarly for ass; and
The orientation of the vehicle is specified by a (3 x 3) direction
cosine matrix. Since we are interested in single-axis orientation, we
will only require knowing three direction cosines instead of nine. 1In
the study we will orient bz in inertial space. The econtrol torques
required to orient the vehicle are produced by mass expulsion devices
alined with each of the three axes. It is assumed the mass flow rates
are used to vary the torques, and that they are bounded (except when
examining proportional control). The vehicle is inertially unsymmebtrical
and is considered to be in a general tumbling motion at the initial

time. The objective of control is to apply torques for a fixed period

of time in a manner that will reduce total momentum to zero and orient
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the b, axis of the vehicle from any initial orientation to any other
prescribed orientation in inertial space. Furthermore, we must
accomplish this task with the control program that uses the least amount
of fuel. This verbal statement of the problem will now be formulated
more explicitly.

The dynamical equations of motion of a body of fixed inertia
rotating about a point in inertial space and acted upon by exbernal

torques are given by the following set of equations:

{(1-8)/a} wowy + v,/

d)l =
by = {(B-a)} wywy + vp (&)
ay = {(-1)/B} wyu, + v5/B
where
o = Il/Ig Roll to pitch inertia ratio
B = 13/12 Yaw to pitch inertia ratio
Y1 = My /Tp o
Control accelerations, rad/sec
Yo = Mp/Ip
normalized to Ij
Yz F Mé/Ie
w; = body rates, rad/sec
i=1,2,3
M, = torque, 1b /ft

The three kinematical variables (direction cosines) required to specify
the orientation of bz are designated a3, azz, @3- These variables
are related to the dynamical variables by the following set of differ-

ential equations (see ref. 5 for a discussion on this):
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B3 = UgBpg = UpBag

= b2 = Wagz = Walyg | (5) e

L
T 8z T UWoll1g = Wap,

For this study the specific values of fthe roll and piitch inertia ratios
were taken to be «=1.15, B = 0.48. Also, the maximum conmtrol SRR P

“torque acceleration permitted in the nonlinear controller situation was

limited- be"faﬁpi'éximately one~-sixth the peak=-acceleration required for -
proportional combrol, or vy, _. =y - —="2y. T =7.5radfsec®. T~ - {
‘ e T lmax 2max ’ 3max . 0y
To transfer (4) and (5) into state variable form, the following = ;
substitutions are made: '.‘
815 = Xy 3 W =X, ;U =vy,/ R
- ) N
8gz = Xz i . W =X 5 Up T Yp ) '
8533 = X 3 W = Xg 3 Ug = 'Ya/ﬁ : é'
This gives us the following set of state variable equations: ‘
- N
Xy = XgXg = XgXg
Xy = XgXg = XgXy
X3 = XgX3 = Xg4Xp 5 (6) P
x4 = {(1-8)/0} %% + my
%5 = {(B-2)} xex4 + vz ' S
% = {(a=1)/B} xux5 + ug '

" The objective of the control is to take the sbate vector from an
arbitrary initial value x(o) %o an arbitrary final value x(T) in
a fixed interval of time [0,T], and use the least amount of fuel in

so doing. A new coordinate, propor‘bional' t0 The total fuel used in all three
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axes,can be defined as follows: - i@
t 3 ‘ g ‘a;~
x(e) =] ) lw(nlar (7) '

and we can then interpret the objective as the minimization of the

terminal value x,(7T).

Control laws

The nonlinear optimal conbrol can be derived by an application of
The Maximum Principle. This derivation will not be given here but a
summary of the equations necessary for computer implementatlion will be

given. First are the adjoint equations which can be shown to be:
’ ‘ =
P1 = PaXs =~ P3Xs

Pg = P3Xg = Pi1Xs

]

'ﬁa DP1Xg = PaXs

) (8)

il
]

Ps = PaXa = DaXs - PeXs(B~a) - pexs(e-1)/B

It

.. Dg = DP1Xa = PaXy = P4Xs(l"5)/°‘ - P6X4(°“'1)/B

I

‘Mﬁé PaXy = P1xg - P4X5(1'B)/a ~ psxs(B-)

-

Second are the equations defining the optimal control vector at each

instant of time: -~
T uz(t) = N, sgn P1+3(t) if . 1P1+3(t)l > "
ui(t) = 0 i lp1+3(t)] <1 k

where 1 = 1,2,3 and N; is the maximm torque acceleration allowed

in-the i** control axis. It is seen that the control torque is of
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the on-off character and that torque direction is obtained by assigning

1 1

the correct sign to the "on" signal according to equation (9).

An optimal proporticnal control law used in this paper for compar-
ative purposes was baken from reference 5 and is discussed briefly here
for the sake of completeness. 1In reference 5 the structure of the

optimal control law was assumed to be of the form:

Uy = -DxXg - Exp
up = -Fx; + Gxy (10)
ug = -Hxg

The parameters D, E, F, G and H were left free, and by means of a
random parameber search suitable values were found for which the stated
objective of the problem (zero momentum and alinement of b, to Sg)

was achieved. The search was repeated a number of times, each time
observing system performance giveh by equation (7). An‘optimum parameter
vector was selected from the set of parameter vectors which satisfied

the problem cbjective and minimized the performance criteria. This
parameter vector, in conjunction with equation (10), defines optimal
proportional control. This control may be difficult to achieve in
practice, however, since no bounds have been imposed on The thrust.

When there are bounds, the control law is then referred to as opbtimal

sagturating proportional control.
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The Vector Metric

The desired boundary condition at the terminal $ime was chosen to
‘be zero momentum and alinement of the body axis bg with the inertial
axis Sz; this is expressed by x(T) = (0,0,1,0,0,0). To satisfy
‘these boundary conditions, it is necessary in the random search approach
to introduce the vector metric J as discussed previously. Its

general form was specified in reference U to be J = (JD, JV’ JP) where

the subscripts on the components refer to displacement, velocity, and
adjoint variables, respectively. However, in this application, since
all terminal states x(T) are fixed, p(T) is completely free so that
we may ignore the JP component in the vector metric. For the present

example JD and JV are taken to be

;D==V/x§ + xg

JV/= fof + x§ + xg

+ (x5-1)%

It is clear that Jv =0 ﬁaplies' X4y Xg; Xg = 0 which represents

zero momentum as desired. Also, JD 0 implies the desired final

orientation x; = x, =0 and x; = 1. In actual practice we will only
.require
<
(JDJ JV) (eD) CV)
where the € values are chosen to meet ‘the problem requirements. For

the specific problem discussed below, the value of ev chosen reduced

a 10°/sec initial velocity error in each axis to approximately 0.75°/sec in

v
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each axis at time T. The eD chosen required that the by; body axis

be oriented to within a few. degrees of the S, inertial axis, from any T L

- initial orientation. e e

-t . '

. Timé"ﬁiétory Solutions

o S e e e e . - o )

[ t

In this seqtion~#e‘Wii1'éi§g>soﬁe computer solutions.for4£he L
satelliﬁé;attitude acquisition problem. Our interest will center on - .
results for the optimai nonlinear control obfained by implementing the E\ﬁ
random search algorithm discussed in the preceding sections. For f&g
comparison, we will also give results for no control and the proportional
control studied in reférence 5. : : . ' I“J

Teble I sumnmarizes the controllers o be studied, the initial Table 1 A

conditions of the vehicle, and the resulting fuel requirements. It is

worth emphasizing again that in the initial condition vector the first
three components are the initial angular positions given in terms of
directioh cosines varying between ~1 and +1. The latter three components
are ‘the initial éngular velocitiesAin degrees/second, and were chosen !5;
somewhat arbitrarily. Theréesired final condition vector is taken to be ?}5
xg(T) = (0,0,1,0,0,0); +thus, the initial momenfum.is reduced to zero
and the body axis by is to be kept alined with the inertial axis S;.
Also, a solution is giﬁen for the more general case where initiai'
misalinement exists.

‘A. No control - In figures 6(a) and (D) are shown the time his- <<§g%:’6

tories of.the state variables describing the motion of the system when

no control is used and the vehicle starts with the initial condition
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x(o) = (0,0,1,-10,10,10). This corresponds to initial alinement of
axes but with the initial angular velocities indicated. It can be
noted that the angular positions vary over their entire range (-1,1)
during the time interval [0,T]. From these results it might be
antlcipated that with limited torque conbrol, the.wide range of angular
position variations would persiét over a substantial portion of the
'interval. In this event, the equations of motion are distinctly non- -
linear and it is inappropriate to linearize them. The Maximum Principle
allows these nonlinearities to be dealt with directly.

B. Optimal Proportional Control - The ﬁime history solutions for
the optimal proportlonal control derived in reference 5 (as discussed
aboYe) are glven in figure T for the same initial conditlon as with no Fig. 7

'/é;ntrol (see Table I). As is well known, opbimizing system performance
under the assumption of propdftional controlsofﬁen leads to impulsive-

typg,cenﬁfai. This tendency can be seen in figure 7(c) where the

,‘/ g
-

" initial borque acceleration rises to 44 mrad/sec®

and then decreases

relatively quickly to zero. A normalized fuel consumption as measured

by the compuber was x,(T) = 0.65. This is nearly two and one half times
" the minimum theoretical value of 0.28 obtained by allowing an ideal

J”impulééxaf torque.

In practice,rthe,fuel/réquiféﬁéhts of 0.65 could only be attained
with propbftional control, i.e., without saturation of-the torque. It was . _
demonstrated in reference 5 that the effect of saturation on the propor-

tional controller is to increase both the consumed fuel and the time
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required to accomplish the mission. However, the results given there | |
Q%ere for initial velocities of the vehicle of only 4°/sec rather than ;j
the lOO/sec used herein.

C. Optimal Nonlinear Conbrol =~ The solutions for the optimal o
nonlinear controi obtained by implementing the random search algorithm ’ s
are given in figures 8 and 9. These figures correspond, respectively, Figs. 8 ‘}g
to the cases indicated in Table I: initial salinement and no initial &’ é§x
alinement. Eyﬁ
%The results given in figure 8 are for initial alinement of axes in ,

which the initial condition vector is x(o) = (0,0,1,-10,10,10), the i
same as for the other combrollers discussed above. The solutions Foos
obtained are quite different from the previous cases as can be seen by {;;
comparing figure 8 to figures 6 and 7. It is noted that the maximum :
torque for optimal nonlinesr control is approximately one-sixth the ]%g
peak value for proportional control (nobte the differemt origins for the
three cqntrol fuhctions). From careful examination of the time hisfories,
it appears that the opbtimal control law is anticipabtory, that is, it O
appears to act at the most advantageous moment in order to reduce the ﬁsﬂ
large excursions of +the states to the desired end values. Fuel |
consumption was found to be x,(T) = 0.31 which is onlyvl.14 times
1a;gernthan"for/the optimal ideal impulse case. By comparison, the

'M;ptimal proporﬁional control is very inefficient. Proportional control
uses 2.1 times the fuel for—bptimél nonlinear control. This factor

w0u;d/bé/3§en 1afger if the comparison were made to the more practical

-
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satu%ating ﬁroportional control system. Note also in figure 8 that the
operate times are nearly the same as for the proportionai control : 3.,
system. Thus, we need not necessafily expect a time penalty for the
practical constraint imposed by control saturation.
In the results given in figure 9, the initial condition vector oy

x(o) is not alined. The initial value is x(o) = (O, %E’ %5,-10,10,1o>‘

and corresponds to an initial rotation of‘ by of 45° in the 85, S . : o
Pplane. The_time nistories end optimal control thrust are seen to be St
ﬂasimiiernto those with initial alinement. As for the fuel, we might A%
expect that angular position error at the initial time would require a

higher fuel consumption to obtain the same objectives. Indeed, experi-

s
L

////néﬁﬁal data show that fuel required is O.43 which is 4O percent more

than when the axes are initislly alined. ‘ ‘ R

) Bouhaagx Cost Functlon Surfaces “A‘ﬂw,"ﬂ;‘ B . V,f

—— L

It was- p01nted out prev1cusly that 1rregular1ty in the boundary
cost function hypersurfaces reflects the need‘fﬁr'a’éeafchfalgorithm'" o oy

that 1ncorporates global as well as local—seeklng propertles. The f}g‘
hlghly 1rregular nature of these hypersurfaces for the attitude control o ;
problem is demonstrated in figure 10. Here are shown typical two- Fig. 10
dimeneional cross sectionsAthrough The hypersurfaces at a solution

point. The curves were.pbtained‘by slowly varying one of the adjoint ’4

variables from -100 volts to +100 volts while all others were fixed at

their respective solution values. Note in particular the irregular
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multipeak nature of the surfaces and the occaéional noisy appearance.
It is also worth noting the rather narrow valleys surrounding the
optimum point. These surfaces clearly'indicate the difficulties a
deterministic method might encounter. For example, the gradient method
would have ample opporbunity of "hanging up" in the wrong valley.
Furthermore, the two~dimensional curves give only & hint of the diffi-

culties to be expected in the actual six-dimensional space.

CONCLUDING REMARKS

It was demonstrated in reference 4 that the random search technique
gave a practical approach to generating explicit optimal solutions for
a moderately complex example problem under a wide range of conditions.
An objective of the present study was to demonstrate the feasibility of
'{ﬁsing the random search technique in a different and more complex
- situation. The results presented in this paper gave a positive indi-
catlon of that feasibility and fogether with reference U4 suggest that
possibly many high-order nonlinear problems will have complicated map-
pings and that the random search methods would be highly successful in
coping with them. Furthermore, the results of this paper show quite
explicitly~What gains in system performance can be made in a given
situa%ion by using rigorously derived optimal control compared to a more
conventional "optimal" control procedure. Such knowledge gives greater
impetus ﬁo‘seék efficient ways of;implementing the optimal npnlinear

control. The open-loop aspect of the controls generated in this manner
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still limits any on-line capability. However, it is believed that off-
(?Line preliminary design capability for studying moderately complex

nonlinear dynamical systems could be enhanced by this approach.
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TABLE I - COMPARISON OF CONTROL SYSTEMS

No Coﬁ%rol

Optimal Proportional Control (no saturation)

Optimal Impulse ControlA

Optimal Nonlinear Control (with saturation)
a. Initial alinement |

b. Initial nonalinement

INITIAL CONDITION FUEL
(0,0,1,-10,10,10) 0
(0,0,1,-10,10,10) .65
(0,0,1,-10,10,10) .28
(0,0,1,-10,10,10) .31
11 L
(0,75,75,-10,10,10) 43

gmrnre
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FIGURE LEGENDS

Figure 1. = Typical Boundary Cost Function Surface

W

Figure 2.
Figure 3.
Figure L.
Figure 5.

Figure 6.

Figure 7.

Figure 8.

Hybrid System Block Diagram for Random Search Method
Hybrid System Hardware
Sequencing -of Events During One Iteration

Algorithm Flow Graph

‘Time Hisbory of State Vector; No Control; Initisl Alinement

of Axes

Time Histories of State and Control Vectors; Opfimal
Proportional Control; Initial Alinement of Axes

Time Histories of State and Control Vectors; Optimal Nonlinear
Control; Initial Alinement of Axes

Time Histofies of State and Control Vectors; Optimal Nonlinear
Conﬁrols Initia.iNonalinemen‘t of Axes

Example Two-Dimensional Cross Sections of Boundary Hyper-

surfaces




VINOSITYD ‘G2t LI33OW "¥3INID HOHVISIY SIWY
NOUVYLSINIWAY: 3DVdS ANV SOUNVYNO¥IY TYNOILYN

*oorJJaNS wOTqoUNI 45800 Arepunoq TROTAAL —*T oIn8Td

(0) d 3718VIdvA LNIOrav

9d\ _

M NOILONNd 1S0O AdvAdNNOd



VINYOANIYD ‘G131 113HOW “HIINID HOUVISIY SIWV.
NOILVUISININGY 30VdS ONV: SDINYNOEIVY TYNOUVN

*POYILDUW YOIBOS WOPUBI JOT WBISBTD MO0Tq Weasds PIIaLH -°g 24n8TJg

1907 WHLIY0ITY

AJOW3IN

—_—_—————— AYOW3IN o _
|
0=W NVIW |
—_— e — —
yu © ‘NOILVIAZQ » W0 —— P
] QYYaNYLS v_a ona (0)X
“ y° | 304n0S 3SION !
_ _
m (3'd‘x)n=n
| (4'n‘x‘d)6=d
t (4'nx) } =X
; |
NOILYLNdWO? (L)y (hd
et ——————| ag————————— QY fee——
dr OIL3IN (L) ($)X
Ar|= ol |
ap _
(WHLI¥091Y) . NOILYLNdW09
NOILYLNdWOD TYLI9IQ | 90TVYNY



VINYOAITYD ‘GT3l4 -L13HOW. "¥3INID. HDAVASIYH SIWNV.
NOUVIISINIWGY 30VdS ONV SHUNYNO¥IY TWNOILVN

‘oxempary weasfs pTaIqlH - 2Jan3TI

310SNOD
AVdsIa ¥3LNdWOD 9OTVYNY
_
OHLNOD >
NOILYY3L] (0)yd (L)yX
C yaLNn0D 1 W3LSAS T wa t T |
| Y3LNNOD | . y v/a o a/v |
| 3w 130V4Y3LNI Lomod  booooi
| 7178390 1 T0HLINOD W3LSAS JOVINIT
TTOH1NQD 0 4._.400
¥3av3y 3dvl
auvo | | 93N 1 Inowm
Y3LNdWOD VLI9IA




VINYO4ITYD ‘01314 LIBHOW '3INTD HI¥VISTY SIWY
NOIVYLSININGY 3DVdS ONY. SHINYNONIVY TYNOUYN

B e s

LI

*UOTIBISAT 2UC JUTJINP S1UIAD O mqﬁososmmm ~°H 2INITA

GT0H NI 039V 1d

300N JAOW NOILIONOD SILVYLS J0TYNV
J1vY¥3d0 NI (39Y1d VILINE NI @30V d NV V11910 0L
SYOLYHIILINI J0TYNV SYOLVHIILNI J0TVNV IN3S 1dNYY3ILINI
m,F ._dq . mx N*
J0TYNY 01 J0TYNY WOY4
VIYO LNdLAG WHLIY0ITY 40 NOILNAJIIXI SIIVIS o<uz.l

(1)
G01¥3d

00143d NOILYYHIdO V11910 -

NOILYINI VY
J07WNY

NOILVY3Ll 3INO




START
INITIALIZE

[ ENABLE INTERRUPT |

{

START FIRST INTERATION
BY SENDING OPERATE
PULSE TO ANALOG

i

HALT, WAIT FOR l

INTERRUPT AT 4

<INTERRUPT GENERATED AT fp>

l READ STATES WITH A/D: |
(1), p¥ (1) ¢

SEND 1C PULSE
TO ANALOG AT t3

CALCULATE METRIC:
= (K, ok, 9k

RESET MODE

UPDATE MEMORY :
ey

p£(0) = pk(o)

YES

(SoLUTIoM ~_” <€?

SET UP END STATE
CONDITION

il

[ PRINT DATA

1

SET ADJOINT IC'S

TO VECTOR WHICH

GAVE SOLUTION:
pk+10)= pho)

SET NEW ADJOINT IC'S
USING SINGLE-STEP STRATEGY:

pk+1 (0)- pé(0) + €%

IF TRIALS RESULT
IN g CONSECUTIVE
FAILURES, INCREMENT
o TO NEXT VALVE
OF THE SEQUENCE
(0.0 0y)

IF HAVE GONE
THROUGH THE SEQUENCE
(07,..., &%) C TIMES
THEN REINITIALIZE

| INITIALIZE I

|

SET LAST GOOD ADJOINT
IC'S TO ZERO:
p {0)=0

{

SET LAST GOOD METRIC
TO INITIAL VALUE :

34= 40

GENERATE €K +1wiTH
UNIFORM RANDOM
NUMBER ROUTINE

SET NEW ADJOINT IC 's:
pk+l (0)=gk +1

]

RESET NOISE rms:
o= oy

NO
YES l
I ser LOCAL SEARCH: l
2Q0Y; . . . 0y T QO

et 4

I

GENERATE €K *1 wiTH
RANDOM NUMBER GENERATOR

l

RESET NOISE VARIANCE:
oo

SET NEW ADJOINT ic's
FOR NEXT TRY

pk +1(0)= pl(oh,ckbl

i

QUTPUT DATA TO ANALOG
THROUGH D/A AT tg4

i

| ENABLE INTERRUPT

START NEW ITERATION
BY SENDING OPERATE
PULSE TO ANALOG AT fg

Figure 5.- Algorithm flow graph.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
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SCALES

Iy 0.l

DIMENSIONLESS

Jy = 20 m rad/sec

| OPTIMUM P

(1) Py VARYING
| OPTIMUM Py
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(c) P3 VARYING

| OPTIMUM Py
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0
Jy

0_

(d) Py VARYING
| OPTIMUM P

)

0
dy

—

e) Py VARYING
| OPTIMUM P

() Py VARYING

Figure 10.~ Two-dimensional cross sections of boundary hypersurface;
initial alinement of axes.
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